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Abstract. The Linear Noise Approximation (LNA) is a continuous ap-
proximation of the CME, which improves scalability and is accurate
for those reactions satisfying the leap conditions. We formulate a novel
stochastic hybrid approximation method for chemical reaction networks
based on adaptive partitioning of the species and reactions according to
leap conditions into two classes, one solved numerically via the CME and
the other using the LNA. The leap criteria are more general than parti-
tioning based on population thresholds, and the method can be combined
with any numerical solution of the CME. We then use the hybrid model
to derive a fast approximate model checking algorithm for Stochastic
Evolution Logic (SEL). Experimental evaluation on several case stud-
ies demonstrates that the techniques are able to provide an accurate
stochastic characterisation for a large class of systems, especially those
presenting dynamical stiffness, resulting in significant improvement of
computation time while still maintaining scalability.

1 Introduction

Biochemical systems are inherently stochastic: the time for the next reaction
to occur and which reaction fires next are both random variables. When the
reactant molecules are in low number the resulting dynamic behaviour can be
highly stochastic and deterministic models are unable to correctly approximate it
[23,4]. Thus, an accurate characterisation of stochastic fluctuations in biological
systems is essential [30]. It is well known that a biochemical system evolving in
a spatially homogeneous environment, at constant volume and temperature, can
be described as a continuous-time Markov chain (CTMC) [10] Transient analysis
is generally performed through solving the Chemical Master Equation (CME)
[30] or with the Stochastic Simulation Algorithm (SSA) [12]. The SSA produces
a single realization of the stochastic process, whereas the CME gives the proba-
bility distribution of each species over time. The CME can be solved numerically
through solving differential equations or methods based on uniformisation, both
requiring exploration of the reachable state space and thus infeasible for sys-
tems with large or infinite state spaces. On the other hand, the SSA is generally
faster, although obtaining good accuracy necessitates potentially large numbers
of simulations and can be time consuming.



An alternative is to approximate the CME as a continuous-state stochastic
process. The Linear Noise Approximation (LNA) is a Gaussian process which
has been derived as an approximation of the CME [30]. Thus, the LNA is inher-
ently unimodal and not accurate for multimodal dynamics. Its solution involves
a number of differential equations that is quadratic in the number of species and
independent of the molecular populations. As a consequence, the LNA is gen-
erally much more scalable than a discrete stochastic representation. For these
reasons, the LNA has recently been used for model checking of large biochemical
systems [8,5]. The solution given by the LNA is accurate if conditions on species
and reactions known as the leap conditions are satisfied, which holds in the limit
of high populations, but typically only for a subset of species and reactions (i.e.
stiff systems). As a result, a discrete stochastic representation is necessary for
the remaining species. A natural approach is thus to consider a stochastic hy-
brid semantics that combines a continuous approximation based on the LNA for
species respecting the leap conditions and maintains a discrete stochastic rep-
resentation for the remaining species. Fortunately, for a large class of biological
systems the species that respect the leap conditions are in high number [31],
which necessitates solving the CME only for a significantly reduced state space.

Contributions. We present a stochastic hybrid model for biochemical systems,
where a subset of species and reactions is treated with a continuous state-space
stochastic process, the LNA, while the remaining species are treated as a dis-
crete state-space stochastic process. A key advantage is that transient analysis
of a discrete stochastic process is needed only for a substantially reduced set of
species, ameliorating state-space explosion. The main novelty of our approach
is that we partition species and reactions using the leap conditions. This allows
us to dynamically and automatically update the partitions, which is necessary
since the satisfaction of the leap conditions may change with time. We derive
equations for the joint and marginal probability distributions of the partitioned
system. Continuous species are modelled as a mixture of Gaussian distributions,
enabling us to treat multimodality. We present a numerical method for solving
the CME, which adaptively and automatically decides for which species a dis-
crete characterization is needed, and which species can be approximated with
the LNA, thus resulting in significant improvement of computation time while
still maintaining scalability. We then employ the presented hybrid semantics to
build a fast and scalable probabilistic model checking algorithm for Stochastic
Evolution Logic (SEL), a temporal logic presented in [8]. We implement the
techniques and demonstrate on several case studies their ability to provide an
accurate stochastic characterization of systems for which the LNA is imprecise,
but full solution of the CME, even using advanced numerical techniques, is not
feasible because of scalability issues. We emphasise that our method can be used
in conjunction with any existing numerical solution of the CME.

Related Work. The work of Henzinger et al. [18], where a hybrid method is
presented with a subset of species treated as a continuous approximation and



the remaining species by solving the CME, differs from ours in at least two key
aspects. Firstly, their continuous approximation is deterministic, whereas ours is
continuous stochastic. Secondly, they partition the species based on a threshold
on the molecular population, rather than the leap conditions, which may lead to
inaccuracies, since the error of the deterministic model depends not only on the
molecular population but also on model parameters [10]. Our use of the leap con-
ditions guarantees the accuracy of the stochastic approximation. Thomas et al.
[29] develop a conditional LNA method and apply it to gene expression networks.
They approximate the probability distribution of gene expression products with
the conditional LNA, while still treating promoters with the CME. Our approach
is similar in the sense that we also consider the LNA for a subset of the species
and a discrete-time Markov process for the remaining ones. However, it is not
clear in [29] how to partition the species. Instead, we provide criteria based on the
leap conditions to automatically decide for which species the LNA is accurate,
and which species instead need a discrete characterization.

In [17], the authors present the method of conditional moments for approx-
imating the moments of the solution of the CME, where small populations are
treated via a discrete process and high using approximate moment closure. How-
ever, how to automatically partition the species is left as an open problem.

Partitioning of species and reactions of a reaction network for the purpose of
speeding up the SSA in multi-scale systems has been explored in [15,26,25]. For
instance, Yao et al. introduced the slow-scale stochastic simulation algorithm
[6], where they distinguish between fast and slow species. Fast species are then
treated assuming they reach equilibrium much faster than the slow ones. Adap-
tive partitioning of the species has been considered in [19,11]. However, in both
cases, the authors consider continuous models that differ from the LNA. In par-
ticular, in [11] the authors use a jump diffusion Markov process to approximate
the original CTMC and derive error bounds to decide the species partitioning.

2 Background

Chemical Reaction Networks. A chemical reaction network (CRN) C =
(Λ,R) is a pair of finite sets, where Λ is the set of chemical species, |Λ| denotes
its size, and R is a set of reactions. Species in Λ interact according to the reac-
tions in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the
reactant complex, pτ ∈ N|Λ| is the product complex and kτ ∈ R>0 is the coeffi-
cient associated to the rate of the reaction. rτ and pτ represent the stoichiometry
of reactants and products. Given a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1) we often
refer to it as τ1 : λ1 + λ2 →k1 2λ3. The state change associated to a reaction τ
is defined by υτ = pτ − rτ . Assuming well mixed environment, constant volume
V and temperature, a configuration or state x ∈ N|Λ| of the system is given by a
vector of the number of molecules of each species. Given a configuration x then

x(λi) represents the number of molecules of λi in the configuration and x(λi)
N is

the concentration of λi in the same configuration, where N = V ·NA is the vol-
umetric factor, V is the volume and NA Avogadro’s number. The deterministic



semantics approximates the concentrations of species over time as the solution
Φ(t) of a set of differential equations of the form:

dΦ(t)

dt
= F (Φ(t)) =

∑
τ∈R

υτ · (kτ
|Λ|∏
i=1

Φ
ri,τ
i (t)) (1)

where Φ
ri,τ
i (t) is the ith component of vector Φ(t) raised to the power of ri,τ ,

the ith component of vector rτ . The initial condition is Φ(0) = x0

N . It is known
that Eqn (1) is accurate in the limit of high populations [10].

Stochastic Semantics. The propensity rate ατ of a reaction τ is a function of
the current configuration x of the system such that ατ (x)dt is the probability
that a reaction event occurs in the next infinitesimal interval dt. We assume

mass action kinetics, therefore ατ (x) = kτ
∏|Λ|
i=1 ri,τ !

N |rτ |−1

∏|Λ|
i=1

(
x(λi)
ri,τ

)
, where ri,τ is

the ith component of the vector rτ , ri,τ ! is its factorial, and |rτ | =
∑|Λ|
i=1 ri,τ

[3]. To simplify the notation, N is considered embedded inside the coefficient kτ
for any τ . The stochastic semantics of the CRN C = (Λ,R) is represented by a
time-homogeneous continuous-time Markov chain (CTMC) [10] (X(t), t ∈ R≥0)
with state space S ⊆ N|Λ|. X(t) is a random vector describing the molecular
population of each species at time t. Let x0 ∈ N|Λ| be the initial condition of X
then P (X(0) = x0) = 1. For x ∈ S, we define P (x, t) = P (X(t) = x |X(0) = x0).
The transient evolution of X is described by the Chemical Master Equation
(CME), a set of differential equations

d

dt
(P (x, t) ) =

∑
τ∈R
{ατ (x− υτ )P (x− υτ , t)− ατ (x)P (x, t)}. (2)

Solving Eqn (2) requires computing the solution of a differential equation for
each reachable state. The size of the reachable states depends on the number
of species and molecular populations and can be huge or even infinite. As a
consequence, solving the CME is generally feasible only for CRNs with very few
species and small molecular populations.

Linear Noise Approximation. A promising line of research is to consider
continuous state-space approximations of X(t). The Linear Noise Approximation
(LNA)[30] is a continuous approximation of the CME, which permits a stochastic
characterization of the evolution of a CRN, while still maintaining scalability
comparable to that of deterministic models. The LNA is accurate for processes
satisfying the leap conditions [31]. Given a CRN C = (Λ,R), we say that the
Markov process X(t) induced by C satisfies the leap conditions at time t if, for
any τ ∈ R, there exists a finite time interval dt such that:

ατ (X(t)) constant in [t, t+ dt] (3)

ατ (X(t)) · dt� 1. (4)



In [13], Gillespie shows that if these conditions are satisfied then the solution
of the CME can be approximated by a Chemical Langevin Equation (CLE).

Then, under the assumption that stochastic fluctuations are of the order of N
1
2

[30,10], we can assume that X(t) admits a solution of the form

X(t) = NΦ(t) +N
1
2G(t) (5)

where G(t) = (G1(t), G2(t), ..., G|Λ|) is a random vector, independent of N ,
representing the stochastic fluctuations at time t and Φ(t) is the solution of
Eqn (1). It is possible to show that the probability distribution of G(t) can be
modelled by a linear Fokker-Planck equation [31]. For every t ∈ R≥0, G(t) has
a multivariate normal distribution whose expected value E[G(t)] and covariance
matrix C[G(t)] are the solution of the following differential equations:

dE[G(t)]

dt
= JF (Φ(t))E[G(t)] (6)

dC[G(t)]

dt
= JF (Φ(t))C[G(t)] + C[G(t)]JTF (Φ(t)) +W (Φ(t)) (7)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t)) its transpose, W (Φ(t)) =∑
τ∈R υτυτ

Tαc,τ (Φ(t)) and Fj(Φ(t)) the jth component of F (Φ(t)). We assume
X(0) = x0 with probability 1; as a consequence E[G(0)] = 0 and C[G(0)] = 0,
which implies E[G(t)] = 0 for every t. The following theorem illustrates the
nature of the approximation using the LNA.

Theorem 1. [10] Let C = (Λ,R) be a CRN and X the CTMC induced by C.
Let Φ(t) be the solution of Eqn (1) with initial condition Φ(0) = x0

N and G be the
Gaussian process with expected value and variance given by Eqns (6) and (7).
Then, for t ∈ R≥0

N
1
2 |X(t)

N
− Φ(t)| ⇒N G(t)

In the above ⇒N indicates convergence in distribution [10]. Theorem 1 shows
that G(t) models the stochastic fluctuations around the rate equations and guar-
antees that the leap conditions are always verified in the limit of high popu-
lations. However, they could be satisfied even for relatively small numbers of
molecules [31]. To compute the LNA it is necessary to solve O(|Λ|2) first order
differential equations, and the complexity is independent of the initial number of
molecules of each species. Therefore, one can avoid the exploration of the state
space that methods based on uniformization rely upon.

3 Stochastic Hybrid Approximation

The key idea behind our approximation is to partition the species into two
classes, those that satisfy the leap conditions, which we approximate by a con-
tinuous process using the LNA, and the remaining species, for which we need a
discrete model. The stochastic process X(t) induced by the CRN can then be



approximated by a hybrid combination of the continuous and discrete processes
describing the evolution of the partitions. The set of reactions satisfying the leap
conditions may change with time and, as a consequence, the partitions of species
and reactions need to adapt with time.

Partitioning of Species and Reactions. Given a CRN C = (Λ,R), condition
(3) is satisfied for reaction τ ∈ R at time t and during the interval dt if ατ (X(t))
is approximately constant during dt. Reaction τ ∈ R, at time t, satisfies condition
(4) if it fires many times during dt. Given σ1, σ2 ∈ R≥0, it can be equivalently
stated that a CRN C = (Λ,R) satisfies the leap conditions at time t for an
interval dt and reaction τ ∈ R if:

Xλi(t) ≥ σ1 · |υλiτ | for λi such that υλiτ 6= 0 and rλiτ 6= 0 (8)

ατ (X(t)) ≥ σ2 (9)

where υλiτ represents the state change induced by the occurrence of reaction
τ with respect to species λi, and rλiτ is the component of the reactant complex
relative to species λi. A method for choosing σ1, σ2 ∈ R≥0 is given in [26] for SSA
(see also below). These criteria induce a partition R = (Rf , Rs) over reactions,
where Rf includes reactions for which the leap conditions are satisfied and Rs

the remaining reactions, respectively called continuous (or fast) reactions and
discrete (or slow). This induces a partition Λ = (Λf , Λs) over the species of the
CRN, where Λf and Λs are respectively called continuous and discrete species.
λ ∈ Λ is in Λf if and only if it is changed by at least one reaction in Rf and
it is not changed by reactions in Rs whose propensity is of the same order of
magnitude as the reactions in Rf that change it, and otherwise it is in Λs. For
some systems these criteria may result in species with large populations treated
with a discrete stochastic process. This happens for systems where the LNA is
not accurate. We illustrate partitioning with the following example.

Example 1. We consider the gene expression model described in [28]. There are
two species, mRNA and the protein P , and the following set of reactions

τ1 : ∅ →0.5 mRNA; τ2 : mRNA→0.0058 mRNA+ P ;

τ3 : mRNA→0.0029 ∅; τ4 : P →0.0001 ∅.

All species are initialized with 0 molecules. We consider σ1 = 30 and σ2 =
0.05. At time t = 0, the initial partition is Λf = {mRNA} and Rf = {τ1},
meaning that the continuous subsystem is given by the only reaction τ1. In
fact, in τ1 mRNA is not a reagent but only a product. Note that, using a simple
threshold on the molecular population of each species to decide if it has a discrete
or continuous characterization, as done in [18], would not consider mRNA as a
continuous species. After the first molecule ofmRNA is produced, the propensity
rate of τ3 increases and its influence needs to be considered. The new species
partition becomes Λf = {} and Λs = {mRNA,P}. Under our initial conditions,



there exists t′ such that mRNA(t′) > 30 with probability 1. As a consequence,
in t′ τ3 is a continuous reaction and the continuous subsystem is:

τ1 : ∅ →0.5 mRNA; τ3 : mRNA→0.0029 ∅.

Thus, P is considered a discrete species until both τ2 and τ4 become continuous
reactions, and thus partitions change over time.

Derivation of the Transient Probability in the Hybrid Model. Based
on the partitioning described above, the stochastic process X(t) induced by a
CRN can be written as X(t) = (Xf (t), Xs(t)), where Xf and Xs respectively
describe the evolution of species in Λf and species in Λs. X(t) is a Markov
process, but Xf (t) and Xs(t), if taken separately, are not Markovian because
they depend on each other. To tackle this issue, following Cao et al. [6], we
consider the virtual process X̄f (t) that describes the same species as Xf , but
with all the discrete reactions turned off. Therefore, X̄f is Markovian because it
is independent of Xs, and species in Λs are now only parameters. Note that X̄f

is only an approximation of the real stochastic process Xf . This approximation
is accurate when continuous and discrete species evolve in different time scales.
Generally, partitioning using the leap conditions guarantees that. However, it
may happen that some reactions satisfy the second leap condition (Eqn 4), but
not the first one (Eqn 3). This particular scenario requires attention because
these reactions would be classified as discrete, and, in this case, the introduction
of the virtual process may introduce some inaccuracies.

Now, we derive equations to study the transient evolution of the continuous
and discrete species. Given xs ∈ Ss and xf ∈ Sf , where Ss and Sf are the state
spaces of discrete and continuous species, then P (Xs(t) = xs, X̄f (t) = xf ),
the joint distribution of Xs(t) and X̄f (t), can be described by the CME (Eqn
(2)). However, this would lead to state space explosion. As a consequence, in
what follows, we first separate the evolution of continuous and discrete species,
and then approximate the continuous subsystem using the LNA. This enables
analysis of the transient evolution of the resulting hybrid process.

We denote P (Xs(t) = xs, X̄f (t) = xf |Xs(0) = xs0, X̄
f (0) = xf0 ) = P (xs, xf , t),

P (Xs(t) = xs|Xs(0) = xs0, X̄
f (0) = xf0 ) = P (xs, t) and P (X̄f (t) = xf |Xs(t) =

xs, X̄f (0) = xf0 ) = P (xf |xs, t). Then, as illustrated in [25], by using the axioms
of probability we have the following equivalent representation for the CME.

Lemma 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0

dP (xf , xs, t)

dt
=
dP (xf |xs, t)

dt
P (xs, t) + P (xf |xs, t)dP (xs, t)

dt

So, to solve the CME in this form it is necessary to calculate P (xf |xs, t) and
P (xs, t). The first term is Markovian because of the assumption that in the vir-
tual continuous subsystem the continuous species are independent of the discrete



species, which are only parameters. Thus, it can be described by the following
master equation for continuous species

dP (xf |xs, t)
dt

=
∑
τ∈Rf

ατ (xf−υτ , xs)P (xf−υτ |xs, t)−ατ (xf , xs)P (xf |xs, t) (10)

where υτ is considered restricted to the components relative to continuous species
in xf − υτ . Since the criteria for applicability of the LNA are ensured by parti-
tioning, Eqn (10) can be approximated by the LNA.

On the other hand, P (xs, t) is not Markovian. However, Proposition 1, whose
proof is in the Appendix, guarantees that P (xs, t) can be derived by solving a set
of equations which have the same form as a master equation, and so numerical
techniques developed for the CME can still be employed

Proposition 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0 we have

dP (xs|t)
dt

=
∑
τ∈R

βτ (xs − υτ , t)P (xs − υτ , t)− βτ (xs, t)P (xs, t) (11)

where βτ (xs, t) =
∑
xf∈Sf ατ (xf , xs)P (xf |xs, t).

βτ (xs, t) is the conditional expectation of the propensity rate of τ at time t
given Xs(t) = xs. Reactions of higher order than bi-molecular are not likely [7],
and they can always be simulated as a sequence of bi-molecular reactions. As a
consequence, we can assume we are limited to at most bi-molecular reactions.
Given λsi , λ

s
j ∈ Λs and λfi , λ

f
j ∈ Λf , if ατ = kτ · λfi · λsj then βτ (xs, t) = kτ ·

E[X̄f
λi

(t)|xs, t]·xs(λj). Similarly, if ατ = kτ ·λfi ·λ
f
j then βτ (xs, t) = kτ ·E[X̄f

λi
(t)·

X̄f
λj

(t)|xs, t]. If ατ = kτ · λsi · λsj then βτ (xs) = kτ · xs(λi) · xs(λj). The uni-
molecular case follows in a straightforward way. Therefore, to fully characterize
P (xs, t) only the first two moments of the conditional distribution of X̄f (t) given
xs are needed. In general, this would require solving the entire CME (Eqn (2)).
However, thanks to our partitioning criteria, we can safely approximate Eqn (10)
by using the LNA and calculating coefficients β using Eqns (6) and (7).

Example 2. Consider the following CRN, taken from [9]:

λz →k1 λ1; λz →k2 ∅; λ1 →1 λ1 + λout

with k1, k2 ∈ R≥0 and initial condition x0 such that x0(λz) = 1 and x0(λ1) =
x0(λout) = 0. According to the partitioning criteria, for σ1 > 1 and σ2 <

k1
k1+k2

there exists t′ > 0 such that for t > t′ the set of discrete species is Λs =
{λz, λ1} and the set of continuous species is Λf = {λout} and the partition
remains constant over time. A state of the discrete state space is a vector xs =
(xs(λz), x

s(λ1)). It is easy to verify that the discrete state space Ss is composed
of only 3 states: Ss = {xs0 = (1, 0), xs1 = (0, 0), xs2 = (0, 1)}. According to Eqn
(10), and using the law of total probability, the distribution of λout for t > t′ is



given by

P (X̄f
λout

(t) = k) = P (X̄f
λout

(t) = k|xs0, t)P (xs0, t)+

P (X̄f
λout

(t) = k|xs1, t)P (xs1, t) + P (X̄f
λout

(t) = k|xs2, t)P (xs2, t)

and P (X̄f
λout

(t) = k|xs0, t) = P (X̄f
λout

(t) = k|xs1, t) =

{
1 if k = 0

0 if otherwise
. As

explained in [9], for t → ∞ we have P (Xs(t) = xs0) = 0 and P (Xs(t) = xs1) =
k2

k2+k1
. As a consequence, our partitioned system correctly predicts that, for

t→∞, λout has a bimodal distribution that is 0 with probability k2
k2+k1

.

As shown in Example 2, the distribution of the continuous species can be derived
using the law of total probability as P (xf , t) =

∑
xs∈Ss P (xf |xs, t)P (xs, t). Since

each P (xf |xs, t) is approximated with the Gaussian distribution given by the
LNA, P (xf , t) is given by a mixture of Gaussian distributions weighted by the
probability of being in a particular state of the discrete state space. This enables
stochastic characterisation of multimodal distributions for continuous species.
Note that the simple LNA, because of its unimodal nature, is unable to represent
multimodal behaviours. The following remark shows that, if some assumptions
are verified, we can further reduce the computational effort.

Remark 1. Eqn (11) requires solving the LNA once for each xs ∈ Ss. This
can be expensive. However, for a large class of systems, especially those where
continuous species have a unimodal distribution, we can consider a reason-
able approximation. We can assume βτ (xs, t) ≈

∑
xf∈Sf ατ (xf , E[Xs(t)]) and

P (xf , t) =
∑
xs∈Ss P (xf |xs, t)P (xs, t) ≈ P (xf |E[Xs(t)], t). So, instead of solv-

ing the LNA many times, this requires solving the LNA only once and condi-
tioned on the expectation of the discrete population.

Ensuring Satisfaction of the Leap Conditions. We now explain how to
choose constants σ1 and σ2 introduced in Eqns (8) and (9). Given a CRN C =
(Λ,R) and an infinitesimal time interval dt, then τ ∈ R satisfies the first leap
condition at time t if ατ (X(t)) is approximately constant during the next dt.
This is verified if the relative state change of each reactant species of τ is small
enough during dt, that is, if

|Xλi(t+ dt)−Xλi(t)| ≤ max(εXλi(t), 1) for λi ∈ Λ such that rλiτ 6= 0

where 0 ≥ ε ≥ 1 is a parameter which quantifies the maximum relative change
admitted in reactant species, extensively discussed in [14] for SSA. Rearranging
the terms, it is easy to verify that the condition holds if

Xλi(t) ≥
|Xλi(t+ dt)−Xλi(t)|

ε
for λi such that rλiτ 6= 0 and υλiτ 6= 0.



Algorithm 1 Compute Transient Probabilities at Time tfin

Require: A CRN C = (Λ,R) with initial condition x0 = (xf0 , x
s
0), a finite time interval

[t0, tfin], and parameters for leap conditions σ1, δ2.
1: function ComputeProb(C, x0, σ1, δ2, [t0, tfin])
2: Compute partitions Λ = (Λf , Λs), R = (Rf , Rs) at time t0
3: (Ss(t0), Xf (t0), t)← ((xs0, 1), xf0 , t0)
4: while t < tfin do
5: Compute ∆t and solve discrete master equation for [t, t+∆t]
6: for each (xs, p) ∈ Ss(t+∆t) do
7: Solve the LNA to compute P (Xf (t+∆t)|Xs(t) = xs)

8: t← t+∆t
9: Compute new partitions Λ = (Λ̄f , Λ̄s), R = (R̄f , R̄s) at time t

10: for each λi ∈ Λ do
11: if λi ∈ Λ̄f ∧ λi ∈ Λs then
12: Move λi from Ss(t) to Xf (t)

13: if λi ∈ Λ̄s ∧ λi ∈ Λf then
14: Move λi from Xf (t) to Ss(t)

15: (Λf , Λs, Rf , Rs)← (Λ̄f , Λ̄s, R̄f , R̄s)

16: P (Xf (t))←
∑

(xs,p)∈Ss(t) P (Xf (t)|Xs(t) = xs) · p
17: Compute P (Xs(t)) by exploration of Ss(t)
18: return (P (Xf (t)), P (Xs(t)))

Thus, for a given CRN, σ1 in Eqn (8) quantifies the minimum number of
molecules for which we can assume the inequality is satisfied. This is reason-
able, as dt is considered to be small, and we assume there are no reactions with
unbounded propensity rate. τ ∈ R satisfies Eqn (9) if it fires many times during
dt, that is, if ατ (X(t)) > δ2

dt = σ2, where δ2 quantifies the number of times that
τ must fire during dt in order to assume the condition satisfied. As a conse-
quence, in order to choose σ1 and σ2, we need to tune three parameters: σ1, δ2
and dt. Empirical values for σ1 and δ2 are given in [26]; dt can be computed as
for tau-leaping (see Section 3 of [14]). A possible strategy is to compute dt only
once, at time t0. Then, we can consider dt constant for any t > t0 and make
use of Eqns (8),(9). Fixing dt does not affect the correctness of the algorithm,
but simply means that, for t > 0, there could be a better choice of dt′ for which
more reactions would be considered continuous.

4 Numerical Implementation

In this section, we present an algorithm to calculate the marginal probability of
discrete and continuous species. We first present the general method, where con-
tinuous species are modelled as a mixture of Gaussian distributions, and then
show how it can be simplified if Remark 1 applies. Algorithm 1 presents the
pseudo-code for our routine. In Line 2, we partition species and reactions ac-
cording to the leap conditions (Eqns (8),(9)). In Line 3, we initialize discrete and



continuous stochastic processes as follows. The discrete process Xs(t) at time
t is represented by its state space, Ss(t), given by a set of pairs (xs, p), where
xs ∈ N|Λs| and p is such that P (Xs(t) = xs) = p. The continuous process Xf (t)

at time 0 is equal to xf0 with probability 1. From Line 4 to 19, the algorithm
iteratively updates the partitions. ∆t is determined as the integration step of
the numerical method used for characterizing discrete species; we use an explicit
4-th order Runge-Kutta algorithm with fixed time step, as in [18]. Alternatively,
methods such as uniformisation [22,20] or aggregation-based techniques [1] could
also be used. In Line 5, Eqn (11) is solved numerically for the next ∆t. In Lines
6 − 7, for any (xs, p) ∈ Ss(t + ∆t), the algorithm solves the LNA to compute
Eqn (10). In Line 9, the partitions are computed at time t according to the leap
conditions (Eqns (8), (9)) at that time. In general, the probability mass at time
t is distributed over a set of states. In some cases the leap conditions can be
checked deterministically based on the expected values E[Xf (t)] and E[Xs(t)].
In a more general scenario, it may be necessary to compute the probability that
the leap conditions are verified for any τ ∈ R and then partition according to
these probabilities, which can be approximated as, at time t, we know the ap-
proximate solution of the CME [3]. In Lines 11− 15, the species are reclassified
and the partitions, Ss(t) and Xf (t), are modified accordingly. If λi was previ-
ously a discrete species and is now assigned to the continuous set, then all states
in Ss(t) that are equal except for the number of molecules of λi can now be
merged. Then, for any state xs of the updated discrete state space, we compute
P (Xf

λi
(t)|Xs(t) = xs), which is Gaussian. In Line 14, for any (xs, p) ∈ Ss(t)

we discretize the Gaussian distribution P (Xf
λi

(t)|Xs(t) = xs), where Xf
λi

is the

component of Xf (t) relative to λi. Finally, for t ≥ tfin, in Lines 16 − 17, the
probability distributions of interest are computed.

A Faster Algorithm. If, for a particular CRN, Remark 1 applies then we
can assume that P (Xf (t)) ≈ P (Xf (t)|Xs(t) = E[Xs(t)]). Then we need to
compute the LNA only once, and conditioned on the expectation of the discrete
stochastic process. The remaining computation can be simplified as well because
the virtual continuous process is modelled with a Gaussian distribution and not
with a mixture of Gaussians.

Complexity and Error Analysis. The solution of Eqn (11) at time t, using
our particular implementation, has a time cost linear in |Ss(t)|. We work with
the numerical method of [18], which, for each (xs, p) ∈ Ss(t), propagates the
probability retaining only the xs such that P (Xs(t) = xs) = p > ζ. We fix
ζ = 10−14. Solving the LNA requires solving a number of differential equations
quadratic in the number of continuous species, and independent of the molecular
population of such species. In the general case, at time t, we need to solve the
LNA during the next ∆t a number of times that is of the same order as the
dimension of the discrete state space (O(|Ss(t)||Λf |) differential equations). If
Remark 1 is applicable, then the LNA needs to be solved only once.



If all species are partitioned as discrete/continuous, then the solution of Al-
gorithm 1 reduces to that of the CME/LNA. The accuracy depends on the choice
of σ1, σ2, where it can be shown [14] that, as σ1, σ2 → ∞, then our algorithm
guarantees an error equal to the error guaranteed by the numerical method used
to solve the discrete master equation. If, instead, both σ1, σ2 equal 0, then the
error of our hybrid algorithm reduces to the error in computing the LNA, which
is model dependent and does not depend only on the molecular counts [10], but
also on the validity of assumption (5), which needs to be verified a posteriori [16].
Error bounds would be a viable companion to estimate the committed error, but
we are not aware of any explicit formulation of them for the convergence of the
LNA. As a result, simulations may be used to validate the results.

5 Model Checking of Stochastic Evolution Logic (SEL)

Employing the hybrid semantics developed here, we present a fast probabilistic
model checking algorithms for Stochastic Evolution Logic (SEL) [8]. SEL is a
probabilistic logic for analysis of linear combinations of the species of a CRN.

Let C = (Λ,R) be a CRN with initial state x0, then SEL enables evaluation
of the probability, variance and expectation of linear combinations of populations
of the species of C. The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2

where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z|Λ|,
I is a finite set of disjoint intervals and [t1, t2] ⊆ R≥0. If t1 = t2 the interval
reduces to a singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species, where B ∈ Z|Λ| is a
vector defining the linear combination and I represents a set of disjoint closed
real intervals. P∼p[B, I][t1,t2] is the probabilistic operator, which specifies the
average value of the probability that the linear combination defined by B falls
within the range I over the time interval [t1, t2] (we stress that this is not equiv-
lent to reachability). The operators supE, infE, infV, supV , see [8], respectively,
yield the supremum and infimum of expected value and variance of the random
variables associated to B within the specified time interval. The quantitative
value associated to a formula can be computed by writing =? instead of ∼ p or
∼ v. For instance, P=?[B, I][t1,t2] gives the probability value associated to the
probabilistic property.

Model checking algorithm. Given Z(t) = B · X(t), where B is a linear
combination of the species of C, then, according to the semantics of SEL [8],
in order to perform model checking, we need to compute P (Z(t) = z|X(0) =
x0), E[Z(t)|X(0) = x0] and E[Z(t) · Z(t)|X(0) = x0] (transient probability, ex-
pected value and variance of Z), where z ∈ Z, and x0 ∈ N|Λ|. In general, this
requires solving the CME, which leads to state space explosion ot the LNA,



which is fast but not always accurate. However, we can use our hybrid approx-
imation in order to derive a fast and approximate model checking algorithm of
SEL. We approximate Z with Zh, which is the linear combination of the hybrid
approximation of X = (Xf , Xs). The following theorems, whose proofs are in
the Appendix, show that model checking SEL just requires computing the hy-
brid approximation of the CME. In fact, uni-dimensional Gaussian integrals can
be computed numerically in constant time. We denote Λst as the set of discrete
species at time t.

Theorem 2. Assume Λst is non-empty and Ss is the state space of Xs(t). Then,
the stochastic process Zh : Ω ×R≥0 → S, with Ω its sample space and (S,B) a
measurable space, is such that for A ∈ B and t ∈ R≥0

P (Zh(t) ∈ A|X(0) = x0) =
∑
xs∈Ss

P (Zxs(t) ∈ A)P (Xs(t) = xs)

where Zxs(t) is a Gaussian random variable with expected value and variance

E[Zxs(t)] = B ·
(
E[X̄f (t)]

xs

)
C[Zxs(t)] = B ·

(
C[X̄f (t)] 0

0 0

)
·BT

where X̄f is the virtual fast process introduced in Section 3.

Note that if the linear combination, at time t, involves only slow species, then
Zx0(t) is distributed according to a delta-Dirac function. This theorem guar-
antees that the transient probabilities of Zh can be computed by solving a set
of Guassian integrals, one for each reachable discrete state. The following the-
orem illustrates that expected value and variance of Zh can be computed by
considering Gaussian properties, even if Zh is not Gaussian in general.

Theorem 3. Assume Λst is non-empty. Then, for t ∈ R≥0

E[Zh(t)|X(0) = x0] =
∑
xs∈Ss

E[Zxs(t) ∈ A]P (Xs(t) = xs)

C[Zh(t)|X(0) = x0] =
∑
xs∈Ss

C[Zxs(t) ∈ A]P (Xs(t) = xs)

The basic tools used in the proofs are the law of total expectation and the
fact that jointly Gaussian random variables are closed with respect to a linear
combination, which is Gaussian [2]. Theorems 2 and 3 assume that, at time t,
the set of discrete species is not empty. In fact, if this is the case, all species are
treated with the LNA and model checking algorithms for this scenario are given
in [8]. We stress that the presented model checking algorithms are accurate only
for finite time. In fact, for unbounded time, events that can be neglected in a
finite time horizon scenario may fire with probability one. In the next section,
SEL is employed in a set of case studies.



6 Experimental Results

We present three case studies showing how our approach significantly improves
stochastic analysis of biochemical systems. We implemented Algorithm 1 in Mat-
lab. All the experiments were run on an Intel Dual Core i7 machine with 8 GB
of RAM. The first example is a CRN where we need to adaptively partition the
species. The second example shows that our hybrid approach can be accurate
in cases where the LNA is not, still maintaining comparable time complexity.
The third is a system for which advanced numerical techniques for solving the
CME such as fast adaptive uniformisation (FAU) [22], as implemented in PRISM
[21], fail (out of memory) and using simulations would be too time consuming
for comparable accuracy. However, we show that our approach still permits an
accurate stochastic characterization.

Gene Expression. We consider the CRN of Example 1. All species in this
example follow a unimodal distribution. As a consequence, we employ Remark
1. To ensure a fair comparison, we use the same numerical method for solving
the CME and for solving the discrete part of our hybrid model: an explicit
4th order Runge-Kutta algorithm [18]. Even though the stochastic semantics is
an infinite CTMC, there are only 2 species in the system with relatively small
variance, and thus a numerical solution of the CME is feasible. In Figure 2,
in the Appendix, we compare supE=?[mRNA][T,T ] and supV=?[mRNA][T,T ]]

for T ∈ [0, 200], the transient evolution of the expected value and variance of
the mRNA, as calculated by direct solution of the CME and by our hybrid
algorithm. Our algorithm decides to use the LNA for around 70% of the time
points. Moreover, we need to adaptively recompute the partitions, as shown
in Example 1. In the table below we compare the performance of the same
properties for different methods. We consider the following metrics: ||ε||∞ and
||ε||1, respectively, average point-wise error and maximum point-wise error of
LNA or hybrid approach with respect to the CME solution. ProbLost is the
probability lost by the numerical solution of the CME due to the truncation of
states with probability mass smaller than 10−14.

Semantics Time ||ε||1 ||ε||∞ ProbLost

CME 205 sec - - < 10−7

Hybrid 35 sec < 10−7 < 10−7 -
LNA 5 sec 9 · 10−5 0.0112 -

The LNA yields good accuracy. However, our hybrid algorithm achieves ac-
curacy comparable to that for CME and is faster by one order of magnitude.

Bimodal Switch. We consider the CRN presented in Example 2 for k1 = 0.7
and k2 = 0.3. We are interested in analysing the probability distribution of
λout over time, more specifically the SEL property P=?[λout = K][100,100], for
K ∈ [0, 200]. Because of the bimodal nature of such a distribution, Remark
1 is not applicable and the LNA alone is not able to correctly estimate such
a distribution. However, our hybrid model, as described in Eqn (2), correctly
characterizes the distribution of λout. Figure 1 compares the distribution of λout



at time t = 100 as estimated by our hybrid approach against the LNA and a full
solution of the CME. The following table compares our hybrid approach with

(a) CME (b) Hybrid (c) LNA

Fig. 1: Comparison of the probability distribution of λout at time t = 100, as
estimated by a numerical solution of the CME (Fig. 1a), by our hybrid semantics
for σ1 = 2, σ2 = 0.5 (Fig. 1b) and by the LNA (Fig. 1c). Note that in Fig. 1a
and 1b there is non-zero probability of having exactly zero molecules.

the other semantics for different values of σ1 and σ2. We consider the average
point-wise error, ||ε||1, and the maximum point-wise error, ||ε||∞, with respect
the a numerical solution of the CME, whose error is due to state space truncation
(ProbLost). For a fair comparison, both for the solution of the master equations
of discrete species and for the CME, we use the same numerical method, an
explicit 4th order Runge Kutta algorithm with fixed time step [18].

Semantics σ1 σ2 Time ||ε||1 ||ε||∞ ProbLost

CME - - 100 sec - - < 10−6

LNA - - 2.3 sec 0.081 0.2971 -
Hybrid 2 0.5 2.5 sec 3.284 · 10−4 0.0024 -
Hybrid 0.5 0.5 2.2 sec 0.081 0.2971 -
Hybrid 2 2 96 sec < 10−6 < 10−6 -

For σ1 > 1 and σ2 < 0.7, the hybrid approach improves the accuracy of the
LNA by around two orders of magnitude, while still maintaining comparable
execution time. Note that, for this choice of σ1 and σ2, the virtual continuous
subsystem ignores the delay induced by the firing of the first reaction, which
explains why the accuracy of the hybrid method is worse than CME. For σ2 >
0.7, all species are considered as discrete and the hybrid approach reduces to
the solution of the CME. For σ1 = σ2 = 0.5, all species are continuous and the
accuracy of the hybrid approach is identical to that of the LNA.

Viral Infection. We consider the intracellular viral infection model proposed
in [27]. This model of virus infection is given by the following set of reactions:

τ1 : DNA+P →0.00001125 V ; τ2 : DNA→0.025 DNA+RNA; τ3 : RNA→0.25



τ4 : RNA→1 RNA+DNA; τ5 : RNA→1000 RNA+ P ; τ6 : P →1.9985

The initial condition is RNA(0) = 1 and all other species initialized to 0
molecules. We consider σ1 = 40 and σ2 = 20. This system, although appar-
ently quite small (6 reactions), is very complex to analyse formally or using
simulations. This is because it is extremely stiff, with all species presenting high
variance and some also high molecular populations. As a consequence, solution
of the full CME, even using advanced techniques such as FAU or finite state
projection (FSP) [24], is prohibitive due to state-space explosion. For all the
properties we consider, FAU is out of memory on our hardware. Because of the
stiffness of the system, simulations are time consuming and ensuring good ac-
curacy is not feasible. Our hybrid approach, by considering P as a continuous
species for any time instant, enables an effective and efficient stochastic charac-
terization of such a system. Note that, for this system, the LNA is clearly not
accurate because of its multimodality.

In Figure 3, in the Appendix, we compare the distribution of the RNA at
time t = 200 as estimated by our hybrid approach and the distribution of the
same species with only the LNA. Results show that the LNA is not able to
accurately characterize the distribution of interest, while our hybrid approach
correctly predicts multimodality and confirms values obtained by Goutsias in
[15] (Figure 5) by using 4000 simulations.

Note that, although the original model is stiff, after species separation the
resulting model is much less stiff. This remains true for a large class of systems,
and it is a consequence of how we separate the species of a CRN. As a result,
for such systems, we need to solve a discrete master equation only for less stiff
systems in a reduced state space. As we see in the following table, this results
in a marked improvement.

Property (SEL) Time (Hy) Time (LNA) Time (FAU) RelErr (Hy-LNA)

P=?[RNA = 0][200,200] 4300 sec 28 OutOfMem 0.215
P=?[RNA = 0][50,50] 1500 sec 20 OutOfMem 0.215

Time(·) represents the execution time of different algorithms. RelErr(Hy-
LNA) is the distance between the quantitative value of the property as computed
by our hybrid algorithm (and validated by simulations) and by the LNA.

7 Conclusion

We presented a stochastic hybrid approximation of the CME based on auto-
matically partitioning the species and reactions of a CRN according to the leap
conditions, and treating the discrete species as a discrete stochastic process,
while treating the continuous species as a mixture of Gaussian distributions.
The use of the leap conditions justifies the hybrid approximation compared to
simple threshold conditions on molecular populations. Our method can be in-
tegrated with any numerical method to solve the CME, such as FAU [22], FSP
[24] or aggregation based techniques [1]. We demonstrated through case studies
that our method is efficient, scales well and can handle multimodality. The algo-
rithm works particularly well for systems where species evolve on different time



scales (i.e. stiff systems), which are common in biology. It also works well when
there are no reactions that satisfy the second leap condition, but not the first
one. In this case, our hybrid model can introduce some inaccuracies due to the
assumptions in partitioning of the species. As future work, we plan to handle
this problem by dealing directly with the non-Markovian aspect of the process
related to continuous species, without introducing any virtual process. Finally,
we plan to implement an algorithm to automatically tune the parameters for
species partitioning using stochastic simulations.
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A Proofs

Proposition 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0

dP (xs|t)
dt

=
∑
τ∈R

βτ (xs − υτ , t)P (xs − υτ , t)− βτ (xs, t)P (xs, t)

where βτ (xs, t) =
∑
xf∈Sf ατ (xf , xs)P (xf |xs, t).



Proof. By using the law of total probability we have

dP (xs|t)
dt

=
∑
xf∈Sf

dP (xs, xf , t)

dt

Then, using Eqn (2), and rearranging terms we have∑
xf∈Sf

dP (xs, xf , t)

dt
=

∑
xf∈Sf

∑
τ∈Rf

ατ (xf − υτ , xs − υτ )P (xf − υτ , xs − υτ , t)− ατ (xf , xs)P (xf , xs, t) =

∑
τ∈R

βτ (xs − υτ , t)P (xs − υτ , t)− βτ (xs, t)P (xs, t)

where βτ (xs, t) =
∑
xf∈Sf ατ (xf , xs)P (xf |xs, t), that is, the conditional expec-

tation of the propensity rate of τ at time t given Xs(t) = xs.

Theorem 2. Assume Λst is non-empty and Ss is the state space of Xs(t). Then,
the stochastic process Zh : Ω ×R≥0 → S, with Ω its sample space and (S,B) a
measurable space, is such that for A ∈ B and t ∈ R≥0

P (Zh(t) ∈ A|X(0) = x0) =
∑
xs∈Ss

P (Zxs(t) ∈ A)P (Xs(t) = xs)

where Zxs(t) is a Gaussian random variable with expected value and variance

E[Zxs(t)] = B ·
(
E[X̄f (t)]

xs

)
C[Zxs(t)] = B ·

(
C[X̄f (t)] 0

0 0

)
·BT

where X̄f is the virtual fast process introduced in Section 3.

Proof. By the law of total probability we have

P (Z(t) ∈ A|X(0) = x0) =
∑
xs∈Ss

P (Z(t) ∈ A|Xs(t) = xs, X(0) = x0)P (Xs(t) = xs|X(0) = x0).

By application of the LNA it follows thatXf (t) conditioned on the eventXs(t) =
xs is a Gaussian random variable with expected value and variance

E[Xf (t)|Xs(t) = xs] =

(
E[X̄f (t)]

xs

)
and covariance matrix

C[Xf (t)|Xs(t) = xs] =

(
C[X̄f (t)] 0

0 0

)
Given a multidimensional Gaussian distribution, each linear combination of its
components is still Gaussian. As a consequence, E[Zh(t)|Xs(t) = xs] = B ·
E[Xf (t)|Xs(t) = xs] and C[Zh(t)|Xs(t) = xs] = B · C[Xf (t)|Xs(t) = xs] ·BT .



Theorem 3. Assume Λst is non-empty. Then, for t ∈ R≥0

E[Zh(t)|X(0) = x0] =
∑
xs∈Ss

E[Zxs(t) ∈ A]P (Xs(t) = xs)

C[Zh(t)|X(0) = x0] =
∑
xs∈Ss

C[Zxs(t) ∈ A]P (Xs(t) = xs)

Proof. The proof follows from the application of the law of total expectation for
random variables with mutually exclusive and exhaustive events.

B Figures

(a) (b)

Fig. 2: Comparison of expected value and variance of mRNA in Example 2 in
interval [0, 200] as calculated by direct solution of the CME (Fig. 2a) and by our
algorithm (Fig. 2b).

(a)
(b)

Fig. 3: Comparison of the probability distribution of RNA at time t = 200 as
calculated by numerical hybrid algorithm (Fig. 3a) and by the LNA (Fig. 3b).


